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Abstract—In this work, a two-stage approach is introduced
to efficiently solve the optimal voltage regulation problem in
radial medium-voltage (MV) distribution networks. The proposed
method uses the available reactive power of distributed gener-
ation units and the on-load tap changer (OLTC) of the high-
/medium-voltage transformer to regulate network voltages, while
also minimizing two conflicting objectives, namely the network
energy losses and the frequency of tap changes. This bi-objective
optimal voltage regulation problem is addressed in two distinct
stages. In the first stage, the network is linearized and a simplified
optimal voltage regulation problem is solved to determine the
candidate OLTC operating plans (COOPs). For each COOP, a
new reactive power allocation method is employed in the second
stage to regulate the network voltages and minimize network
losses. This method follows a rule-based approach, allowing also
its implementation under real-field conditions. The final outcome
of this two-stage process is the Pareto-front which can be used
by the distribution system operators to select the most preferable
solution for the real-time network operation. The proposed
methodology is characterized by reduced computational com-
plexity compared to the application of conventional optimization
techniques. Time-domain and time-series simulations on a radial
MV distribution network are employed to thoroughly evaluate
the performance of the proposed method.

Index Terms—Distributed generation, energy loss minimiza-
tion, on-load tap changer, reactive power control, voltage control.

I. INTRODUCTION

TO ACHIEVE high penetration levels of distributed gen-
eration (DG), distribution system operators (DSOs) must

effectively address a series of technical challenges that affect
the secure and reliable network operation [1]. Among these
challenges, special consideration is given to the distribution
network voltage regulation to tackle potential overvoltages
[2]. Although DSOs can easily handle this problem using
all the available network elements [3], their uncoordinated
operation may increase the stress on the grid by means of both
excessive operation of the network devices and high network
losses [4]. Thus, to improve the overall network performance,
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various optimization objectives can be considered, such as loss
minimization. The problem is then transformed into an optimal
voltage regulation (OVR) problem, which is a newly intro-
duced research topic for distribution networks, characterized
by increased complexity [5].

In the literature, several optimization-based methods have
been proposed to address the OVR problem in medium-
voltage (MV) distribution networks. The vast majority of these
strategies use the reactive power capability of DG units in
combination with the basic network elements, i.e., the on-load
tap changer (OLTC) of the high-/medium-voltage (HV/MV)
transformer, feeder capacitors, and series voltage regulators
(SVRs), to regulate the network voltages in an optimal way.
More specifically, the authors in [6] propose a distributed
method to optimally reallocate the reactive power among the
DG units in order to minimize network losses. An additional
operation constraint is introduced in [7] to limit the daily num-
ber of the tap changes. Furthermore, an offline coordination of
the Q(V ) droop characteristics is proposed in [8] to minimize
the overall reactive power of the DG units. Nevertheless, the
above-mentioned methods attempt to solve a single-objective
optimization problem, focusing on the coordinated operation
of the DG units and neglecting possible interactions with other
network devices, such as the OLTC [9].

To deal with this problem, multiple optimization objectives
can be considered within the OVR concept. Among a wide
range of optimization objectives, the most well-established for
distribution networks include loss minimization [10], voltage
profile improvement [11], and OLTC switching operation
minimization [12]. However, the objective of voltage profile
improvement can be disregarded, since it does not provide
any added value compared to the simple use of voltage limits
constraints that is already foreseen in the OVR concept. Con-
sequently, the problem is simplified to a bi-objective optimal
voltage regulation problem. Nevertheless, conflicts between
the remaining objectives may occur in case of highly variable
generated power due to the intermittent nature of DG units
consisting mainly of renewable energy sources [9]. An attempt
to address these conflicts is proposed in [13] and [14] by
developing a coordinated voltage regulation method, without,
however, ensuring the optimal network operation.

The proposed solutions to the bi-objective OVR problem
can be classified into two main categories. In the first cate-
gory, conventional optimization techniques are employed to
solve the OVR problem [15]. Nevertheless, these methods
present an increased computational complexity, limiting their
applicability in real-time operation of distribution networks.
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To overcome this, a real-time optimal power flow algorithm
based on quasi-Newton methods has been developed in [16],
operating on a fast timescale but with suboptimal solutions.
The authors in [17] propose a linearized approach based on
Taylor series, where the coupling between network voltages
and reactive power is taken into account, thus presenting an
improved performance compared to the well-known dc optimal
power flow (DC-OPF) method. However, inaccuracies and
possible infeasible solutions cannot be sufficiently prevented.
Sophisticated techniques have recently been developed to
reduce the computational burden and improve the performance
of the conventional optimization techniques [18], [19]. In
particular, the conic relaxation method is employed in [18],
while an enhancement of this method is introduced in [19],
where the quadratic constraints are replaced with piecewise
linear expressions. Although these techniques are valid, the
above-mentioned assumptions may result in infeasible solu-
tions during the network operation.

The second category includes the use of metaheuristic
techniques to solve the bi-objective OVR problem. More
specifically, a particle swarm optimization and a teaching-
learning method are proposed in [12] and [20], respectively,
whereas a differential evolution algorithm using the fuzzy set
theory has been developed in [21]. Nevertheless, these methods
present slow convergence rates and may lead to suboptimal
solutions.

The common drawback of the developed methods lies in
the use of generation and consumption forecasts to determine
the operation settings of the participating network elements in
the OVR process. As a result, possible security and reliability
issues cannot be effectively tackled in case of forecast errors.
Furthermore, a clear overview of the trade-off among the
conflicting objectives must be available to the DSOs in order to
decide the best compromise during the network operation. This
is attained by obtaining the Pareto-front solutions of the OVR
problem [20], which is, however, considered a computationally
intensive process.

In this paper, a two-stage solution is proposed to tackle the
bi-objective OVR problem in radial MV networks, using the
available reactive power of DG units and the OLTC of the
HV/MV transformer. The proposed methodology consists of
two distinct stages. In the first stage, the sensitivity theory is
employed to linearize the network operation. Afterward, the
linearized OVR problem is solved multiple times to obtain the
candidate OLTC operating plans (COOPs). In the second stage,
an optimal reactive power allocation method is implemented
for each COOP, following a rule-based approach. Scope of this
method is to regulate the network voltages within permissible
limits and minimize network losses. Finally, the Pareto-front
is obtained which provides a clear overview of the trade-off
between the conflicting objectives. By exploiting the Pareto-
front, DSOs can select the most preferable OLTC schedule
that will be applied in the real-time network operation along
with the second stage of the proposed methodology.

II. THEORETICAL FRAMEWORK

The bi-objective OVR problem is considered as a mixed-
integer nonlinear optimization problem that can be formulated

as follows:

min f(x,uc,ud) (1a)
s.t. g(x,uc,ud) = 0 (1b)

h(x,uc,ud) ≤ 0 (1c)

where (1a) denotes the objective function, while (1b) and (1c)
are the equality and inequality constraints, respectively. x is
the vector of dependent variables containing the voltages of the
distribution network, uc stands for the vector of the continuous
control variables, and ud is the vector of the discrete control
variables. In this paper, the reactive power of the DG units is
treated as a continuous variable, whereas the tap position of
the OLTC is a discrete control variable.

The objective function consists of the linear weighted com-
bination of two conflicting objectives, i.e., the minimization
of network energy losses (Eloss) and of the number of tap
changes (Taps), calculated as follows:

f(x,uc,ud) = w1Taps+ w2Eloss (2)

where w1 and w2 are two weight coefficients. Although cost-
weighting-based coefficients can be used in (2) to scalarize the
bi-objective optimization problem into a single-objective one,
no unique solution exists due to existence of conflicting objec-
tives [22]. To address this issue, the Pareto-front solutions of
the bi-objective optimization problem are derived by varying
the weight coefficients w1 and w2. The analytical expressions
of the optimization objectives are presented in the following:

Taps =
∑
t∈T
|tapt − tapt−1| (3)

Eloss =
∑
t∈T

∑
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∑
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where tapt is the discrete control variable denoting the OLTC
position during time instant t, whereas T is the time horizon
set. The network energy losses are calculated using (4), which
is the exact loss formula as presented in [23]. N is the set
of network nodes, while P t

i and Qt
i stand for the net injected

active and reactive power at the i-th node during time instant
t, respectively. Furthermore, αt

ij and βt
ij are two coefficients

calculated by:

αt
ij =

Rij

V t
i V

t
j

cos(θti − θtj) ∀i, j ∈ N, ∀t ∈ T (5)

βt
ij =

Rij

V t
i V

t
j

sin(θti − θtj) ∀i, j ∈ N, ∀t ∈ T (6)

where V t
i and θti denote the magnitude and angle of the voltage

at i-th node during time instant t, while Rij is the real part
of the ij-th element of the Z-matrix, which is the inverse of
the network admittance matrix.

The equality constraints of (1b) describe the power flow
equations and the OLTC operation. In particular, the power
flow equations are expressed mathematically by [17]:

P t
i = V t

i

∑
j∈N

V t
j [Gij cos(θ

t
i − θtj)

+Bij sin(θ
t
i − θtj)] ∀i ∈ N, ∀t ∈ T (7)
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Qt
i = V t

i

∑
j∈N

V t
j [Gij sin(θ

t
i − θtj)

−Bij cos(θ
t
i − θtj)] ∀i ∈ N, ∀t ∈ T (8)

where Gij and Bij are the real and imaginary part of the ij-th
element of the network admittance matrix. Considering slack
bus during time instant t, the voltage angle is equal to zero,
while the voltage magnitude (V t

sb) is calculated according to
(9) to model the OLTC operation.

V t
sb = V t

hv/[m(1 + taptδ/100)] (9)

Here, V t
hv denotes the voltage magnitude of the HV network

at time instant t, m stands for the voltage transformation
ratio, and δ is the variation of the transformation ratio per
tap position change. Furthermore, the inequality constraints
of (10) are used to maintain the network voltages within
permissible limits.

Vmin ≤ V t
i ≤ Vmax ∀i ∈ N, ∀t ∈ T (10)

Here, Vmin and Vmax are the minimum and maximum permis-
sible voltage limits, respectively. These limits are determined
by the DSOs in compliance with national or international
regulations, e.g., Standard EN 50160 [24]. It is worth noticing
that (10) indirectly imposes limits on the voltage stability
margin of the distribution network, since there exists a strong
dependence of the voltage deviation on the network stability,
as presented in [25]. Finally, (11) and (12) are introduced to
model the reactive power capability of the DG units and the
operation range of the OLTC, as follows:

Qt
min,i ≤ Qt

dg,i ≤ Qt
max,i ∀i ∈ Ndg, ∀t ∈ T (11)

tapt ∈ D (12)

where Ndg is the set of network nodes with DG units and D
is the set of the available tap positions. Qt

dg,i is a continuous
control variable denoting the reactive power of the DG unit
located at the i-th node during time instant t, while Qt

min,i

and Qt
max,i are the corresponding permissible limits. These

limits are time-variant and are calculated using (13) and (14),
as presented in [26].

Qt
min,i = −

√
Si

2 − P t
dg,i

2 ∀i ∈ Ndg, ∀t ∈ T (13)

Qt
max,i =

√
Si

2 − P t
dg,i

2 ∀i ∈ Ndg, ∀t ∈ T (14)

Here, Si denotes the rated apparent power of the DG unit
located at i-th node, whereas P t

dg,i is the corresponding
injected power at time instant t.

Solving the optimization problem of (2)-(14) presents sev-
eral difficulties which can be classified into the following
categories based on whether metaheuristics or conventional
optimization techniques are used:
• Conventional optimization techniques. To obtain the Pareto-

front solutions, multiple solutions of the optimization prob-
lem of (2)-(14) are required, assuming different combina-
tions of the weight coefficients in (2). Nevertheless, this is
a time-consuming process, preventing its implementation in
real-field conditions.

• Metaheuristic techniques. The above-mentioned problem
can be effectively addressed using well-established meta-
heuristic techniques with an inherent ability of obtaining
the Pareto-front solutions on a single simulation run, e.g.,
the non-dominated sorting genetic algorithm II (NSGA-
II) or the group search optimizer with multiple produc-
ers (GSOMP) method [27]. However, these methods are
characterized by slow convergence rates and may lead to
suboptimal solutions.

• Common drawbacks. The complexity of the optimization
problem is strongly related to the network characteristics and
the time step of the performed analysis. The nonlinear be-
havior and the extended size of distribution networks are the
most important factors that increase the problem complexity.
Moreover, small time steps are required to examine the net-
work performance under highly variable generated power,
resulting in increased computational burden. Additionally,
the use of forecast data in the optimization problem of (2)-
(14) to determine the operation settings of the participating
network elements cannot always guarantee the real-time
safe and optimal network operation. For example, in case
of forecast errors, the operation settings are miscalculated
leading to suboptimal solutions during the real-time network
operation, whereas possible voltage violations may also
occur.
To overcome the above-mentioned drawbacks, a new

method is proposed that solves the optimization problem of
(2)-(14) in two phases, namely the planning and the real-time
operation phase. Scope of the planning phase is to determine
the OLTC schedule that will be applied during the real-time
operation phase. This is attained by solving the optimization
problem of (2)-(14) in two successive stages. In the first stage,
a linearized version of the OVR problem is solved to obtain
the COOPs. For each COOP, a rule-based reactive power
allocation method is applied to regulate network voltages and
minimize energy losses, constituting the second stage of the
proposed solution. Afterward, the Pareto-front is obtained and
thus DSOs have a clear overview of the trade-off between the
optimization objectives to decide the most preferable OLTC
schedule. The time frame of the planning phase is determined
by the DSO and can vary from few hours up to a day,
depending on the availability of forecasts. Finally, in the real-
time operation phase, the selected OLTC schedule is applied
in conjunction with the rule-based reactive power allocation
method used in the second stage of the planning phase.

III. FIRST STAGE

Scope of the first stage of the planning phase is to determine
the COOPs. This is attained by employing the sensitivity
theory to reduce the computational complexity of the bi-
objective OVR problem by linearizing the network operation.
Therefore, it is transformed into a mixed-integer linear op-
timization problem by replacing (3)-(9) of the conventional
formulation with (15)-(20). More specifically, (15)-(18) are
employed to linearize (3) as follows [18]:

Taps =
∑
t∈T

TCt
abs (15)
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TCt
real = tapt − tapt−1 ∀t ∈ T (16)

TCt
abs = TCt

+ + TCt
− ∀t ∈ T (17)

TCt
real = TCt

+ − TCt
− ∀t ∈ T (18)

where TCt
real is the real value of tap changes at time instant t

calculated using (16). TCt
abs is the absolute value of TCt

real

calculated according to (17) and (18) using two auxiliary
non-negative variables, namely TCt

+ and TCt
−. The reason

behind the use of these auxiliary variables lies in the following
rationale: Every real number xreal can be mathematically
expressed as the difference of two non-negative numbers, i.e.,
x+−x−. Among the infinite combinations, the absolute value
xabs corresponds to the pair of the non-negative numbers that
minimizes the sum x++x−. Thus, due to the use of (15) as a
minimization objective, the pair of the non-negative numbers
and thus the absolute value are correctly calculated. It is worth
noticing that the use of these auxiliary variables is common
practice in linear optimization theory [28].

Furthermore, the network energy energy losses are estimated
using (19).

Eloss =
∑
t∈T

[P t
loss,pf(a+ b tapt) +

∑
i∈Ndg

ltiQ
t
dg,i] (19)

Eq. (19) is a linear approximation of the network energy
losses with respect to the control variables, i.e., the OLTC
position and the reactive power of the DG units. P t

loss,pf

denotes the network losses at time instant t multiplied by a
linear function of tapt to model the dependence on the OLTC
position. Further details regarding the derivation of this linear
term are provided in the Appendix. Moreover, lti stands for
the sensitivity of network losses against the reactive power of
the DG unit at i-th node during time instant t. Finally, the
network voltages are calculated as follows:

V t
i = V t

pf,i(c+ d tapt) +
∑

j∈Ndg

stijQ
t
dg,j ∀i ∈ N, ∀t ∈ T

(20)
where V t

pf,i is the voltage at the i-th node during time instant
t multiplied by a linear term to model the dependence on
the OLTC position, as analytically explained in the Appendix.
Furthermore, stij is the ij-element of the sensitivity sub-matrix
during time instant t, used to quantify the voltage variations
at i-th node with respect to reactive power variations of the
DG unit at j-th node.

The process to obtain the Pareto-front solutions is depicted
in Fig. 1 by means of a flowchart. Initially, the generation and
consumption forecasts as well as the network characteristics
are determined and a power flow analysis is performed to
calculate the matrices of the network voltages (Vpf ) and
losses (Ploss,pf ). These values are calculated for each time
instant t, assuming that the control variables, i.e., the reactive
power of the DG units and the tap position, are equal to
zero. The size of Vpf is N xT , while the size of Ploss,pf

is 1 xT . Next, the sensitivity matrices (l, s) are calculated
using the results obtained from the power flow analysis.
More specifically, the size of sensitivity matrix l is N xT
and can be analytically calculated following the analysis
presented in [23]. Additionally, the size of sensitivity matrix

w w

iter

iter  iter

iter iter

w w

Fig. 1. Derivation of the Pareto-front in the first stage of the planning phase.

s is N xN xT and is calculated for each time instant t by
inverting the power flow Jacobian matrix [8]. Afterward, the
linearized bi-objective OVR problem is solved multiple times
for different combinations of the weight coefficients. Among
a variety of well-established solvers that can handle mixed-
integer linear optimization problems, e.g., CPLEX, Gurobi,
MOSEK, etc. [7], CPLEX is employed in this paper to solve
the linearized OVR problem. Thus, the Pareto-front solutions
of the linearized OVR problem and the corresponding COOPs
are derived resulting in reduced execution time compared to
the initial nonlinear optimization problem.

IV. SECOND STAGE

As mentioned in Section II, scope of the planning phase is to
determine the OLTC schedule that will be applied to the real-
time operation phase. The decision regarding the most prefer-
able OLTC schedule is made by the DSO, after evaluating the
impact of each COOP on the network energy losses. Although
the Pareto-front solutions of the linearized OVR problem can
be used in the evaluation process, the corresponding losses
are approximately calculated using (19). Thus, to accurately
calculate the energy losses for each COOP, a coordinated
reactive power control (CRPC) strategy is proposed in the sec-
ond stage of the planning phase, assuming the full, nonlinear
representation of the network. The proposed method follows
a rule-based approach to optimally reallocate the reactive
power among the DG units, targeting at the regulation of
network voltages with minimum energy losses. Furthermore,
the proposed CRPC strategy is applied in conjunction with the
selected OLTC schedule during the real-time operation phase.

In the next subsections, the theoretical background and the
actual implementation of the proposed method are analytically
presented to address both overvoltages and undervoltages.

A. Overvoltage Mitigation

The first part of the CRPC method is related to the optimal
dispatch of the consumed reactive power among the DG units
to tackle overvoltages while also minimizing network losses.
The theoretical background of the optimal dispatch strategy is
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based on the following concept: During time instant t, the DG
unit connected to the i-th node will start to absorb reactive
power only when the following conditions are met: 1) V t

i

exceeds Vmax and 2) V t
i is the maximum network voltage.

This concept has been mathematically proved in [29] but the
therein developed implementation is applicable to dedicated
MV feeders where only DG units are connected.

To overcome this limitation, a new control scheme is
proposed. Its distinct feature involves the integration of time
delays on the DG units to prioritize their response towards
overvoltage mitigation. The introduction of the time delays
is justified by the following analysis: Assuming a given time
instant t, the reactive power absorption is initially undertaken
by the DG unit with the maximum network voltage. Never-
theless, in the updated voltage profile, the maximum network
voltage may be shifted to a different DG unit. In such a
case, the reactive power absorption must be undertaken by the
new DG unit, as imposed by the above-mentioned concept.
Thus, time delays are introduced to determine the activation
sequence of the DG units, whose location also coincides with
the location of the maximum network voltages during the
overvoltage mitigation process.

The allocation of the time delays among the DG units
depends on the loading condition of the network and is carried
out by a central controller, which is usually located at the DSO
level. More specifically, the central controller constantly mon-
itors the voltage at the point of common coupling (PCC) of
each DG unit. Based on the network topology and the acquired
voltages, the following time delay allocation process is im-
plemented: Initially, the central controller categorizes the DG
units based on whether they will participate in the overvoltage
mitigation process or not. This is attained by comparing the
PCC voltage of each DG unit with the corresponding voltages
of the upstream DG units. A lower PCC voltage precludes the
possibility that the maximum network voltage will occur at
this DG unit. Thus, this DG unit will not participate in the
overvoltage mitigation process, while the PCC voltages of the
remaining DG units will form an increasing voltage profile.
Afterward, the time delays of the participating DG units are
determined by the central controller. Considering radial tree-
like MV networks, the following twofold condition must be
met:
• In every tree path, the time delay allocation process follows

the activation sequence of the participating DG units, as
foreseen in the above concept. Thus, the smallest and the
highest time delays are applied to the DG units with the
maximum and minimum PCC voltages, respectively.

• In case of DG units with a common upstream node, the
same time delays must be applied in order to be activated
simultaneously and proportionally share their reactive power
consumption during the overvoltage mitigation process.

Finally, the time delays are forwarded to the participating DG
units. This process is carried out at discrete time intervals,
which are DSO-defined and may vary from seconds to min-
utes.

The control logic applied to the DG units is presented in
Fig. 2 and consists of two operation modes. To avoid oscilla-
tions and repeated activation-deactivation cycles between these

Acquire voltage ( Vt
i )

Vpc c,i > Vmax

Vpcc,i = Vmax – 0.5db
α
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pfi = pfmin,i
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Fig. 2. Reactive power absorption control scheme of the DG unit located at
i-th node during time instant t.

modes, a small voltage deadband (db) is introduced. The first
operation mode is related to the proper increase of the reactive
power consumption of the DG units to mitigate overvoltages,
while also taking into account their reactive power capability
limits as defined in (13). More specifically, initially, the DG
unit acquires the PCC voltage (V t

i ) and checks whether an
overvoltage occurs. If so, after a predefined time delay (dtup,i),
the DG unit starts absorbing reactive power by employing
a proportional-integral (PI) controller to zero the difference
between V t

i and the target voltage (Vmax−0.5db). This process
continues till the PCC voltage is effectively regulated or the
equivalent network power factor (ENPF) seen downstream
from the i-th node (spf ti ) is the minimum one (spfmin,i). The
latter condition introduces an upper limit to the reactive power
flowing through the upstream branch calculated using (21).

spfmin,i = cos(arctan(−Rui/Xui)) ∀i ∈ Ndg (21)

Here, subscript u denotes the upstream node of the i-th
node. As shown in (21), spf tmin,i depends only the line
characteristics and can be obtained from the LinDistFlow
equations of [30], assuming zero voltage drop between two
consecutive nodes. The zero voltage drop indicates that there
exist upstream nodes with voltages equal to or greater than
of the i-th node. Thus, this limit is introduced to avoid
the excessive and unnecessary reactive power consumption.
Finally, the DG unit switches to a constant ENPF operation,
leading to a constant voltage drop on the upstream branch.

The second operation mode involves the reverse process
of decreasing the reactive power consumption. This mode is
activated when V t

i falls below the voltage threshold (Vmax −
db). After a predefined time delay (dtdown,i), the reactive power
of the DG unit is reduced using a PI controller until zero
is reached or the voltage regulation is accomplished. In the
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latter case, the constant spf ti operation is activated. It is worth
mentioning that the time delays related to this operation mode
are determined following a similar rational as presented above.
In particular, in every tree path, the smallest and the highest
time delays are applied to the participating DG units with the
minimum and maximum PCC voltages, respectively.

B. Undervoltage Regulation

During the overvoltage mitigation process, the reactive
power absorbed by the DG units is provided by the HV grid
through the HV/MV transformer. As a result, the voltage drop
on the transformer is increased, which, in turn, reduces the
network voltages. Thus, there is a possibility of undervoltages,
especially in passive feeders where only loads are connected.
Scope of the second part of the CRPC method is to effectively
address these undervoltages. This is achieved by exploiting
the reactive power of the DG units that do not participate in
the overvoltage mitigation process in order to provide locally
reactive power support.

The proposed reactive power support strategy follows a
similar approach to the overvoltage mitigation control scheme.
In particular, every DG unit acquires the minimum network
voltage (V t

end), which usually occurs at the end nodes of
the feeders and especially of passive feeders. This value is
forwarded to the DG units by the central controller which
constantly monitors the end node voltages of these feeders.
In case of undervoltages, the DG unit connected to the i-th
node starts to produce reactive power following a predefined
time delay (ctup,i). The time delays are introduced to prioritize
the response of the DG units based on the impact that
may have on the corresponding PCC voltage. This impact
can be quantified using the voltage sensitivity sub-matrix s.
The smallest time delay is applied to the DG unit with the
minimum voltage sensitivity coefficient, i.e., located close to
the HV/MV transformer, indicating that it can provide reactive
power support with the minimum impact on the network
voltages. This process continues till the maximum reactive
power limit of the DG unit, as expressed by (14), is reached or
the undervoltage is effectively addressed. In the latter case, the
DG unit switches to constant power factor operation. A similar
rational is implemented on the reverse process of properly
reducing the reactive power production, where the smallest
and the highest time delays (ctdown,i) are applied to the DG
units with the maximum and minimum voltage sensitivity
coefficients, respectively.

V. NUMERICAL RESULTS

The performance of the proposed methodology is assessed
on the 20 kV radial MV distribution network of Fig. 3. Further
details regarding the technical characteristics of the network
can be found in [31]. Although different DG technologies can
be considered, only PV units are assumed in the simulated
scenarios without affecting the performance and the general
applicability of the proposed methodology. This is justified by
the fact that the different technical features of these technolo-
gies mainly affect the generation profile and the reactive power
capability limits, which, however, have been already taken into

Fig. 3. Topology of the examined network. PV units and loads are connected
to the nodes denoted with red square and black circle, respectively.

TABLE I
RATED ACTIVE POWER OF PV UNITS AND LOADS

Nodes MW Nodes MW Nodes MW
7 0.60 4,23 0.75 3,10 1.00

12 0.70 8,37 -0.20 15,20,25 1.50
13 -0.90 6,14 2.00 22,27,38,40 -0.60
24 2.25 29,35 -0.80 5,17,26,30,41 -0.30
31 -1.00 32,33 -0.70 9,19,28,42,44 -0.40
39 -1.20 16,18 -0.25 2,11,21,34,36,43 -0.50

account in the proposed methodology presented in Sections III
and IV. PV units and loads are numbered according to their
connection node, whereas their rated power is presented in
Table I. The negative sign indicates active power consumption.
The power factor of all loads is considered equal to 0.95
lagging, while the nominal power factor of the grid-interfaced
inverters of the PV units is considered equal to 0.85. The
permissible voltage limits are equal to ± 5 % of the nominal
value. Considering the CRPC method, PV3 and PV4 have
been selected to address undervoltages, since they present the
smallest voltage sensitivity coefficients against reactive power
variations, as presented in Table II. These coefficients have
been calculated assuming the rated generation and consump-
tion values of Table I. The remaining PV units participate in
the overvoltage mitigation process.

In the next subsections, dynamic simulations are performed
to validate the CRPC method during the real-time operation
phase. Furthermore, time-series simulations are employed to
evaluate the overall long-term performance of the proposed
two-stage method of the planning phase.

A. Dynamic Simulations

The examined network of Fig. 3 is modeled with the PSIM
software that is widely used for time-domain simulations.
The simulation period is equal to 3.2 s. The voltage of
the HV busbar is kept constant to 1.05 p.u. and the tap
position of the HV/MV transformer is equal to zero. The loads
connected between nodes 27 and 36 operate at 50 % of the
nominal capacity, whereas the remaining ones operate under
nominal conditions. Furthermore, the active power output of
some indicative PV units is depicted in Fig. 4a, while the
remaining ones operate at their rated power. The voltage
magnitude at the end-nodes of the passive feeder is forwarded
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TABLE II
VOLTAGE SENSITIVITY COEFFICIENTS OF NODE 25 WITH RESPECT TO

REACTIVE POWER VARIATIONS OF PV NODES

PV Node V/Mvar PV Node V/Mvar PV Node V/Mvar
3 91.18 10 139.79 20 263.09
4 138.01 12 140.38 23 369.37
6 139.50 14 209.78 24 404.30
7 139.64 15 210.43 25 456.63

to PV3 and PV4 that participate in the undervoltage mitigation
process, assuming a communication delay of 0.03 s. Finally,
the voltage deadband db is set to 0.002 p.u., while the time
delay between two sequential activations of the overvoltage
mitigation process is equal to 0.2 s. The same time delay is also
applied between two sequential activations of the undervoltage
regulation process.

The reactive power of the PV units is presented in Fig. 4b,
whereas the voltage magnitude of several network nodes is
depicted in Fig. 5.

The first part of the proposed CRPC method, i.e., the
overvoltage mitigation, is activated at 0.1 s. The time delay
allocation has been implemented according to the network
voltages prior to 0.1 s, following the approach presented
in Section IV-A. For example, PV25 will instantly react on
overvoltages, PV23 and PV24 after a time delay of 0.2 s,
PV15 and PV20 after 0.4 s, and so on. Considering the
second operation mode of properly reducing the reactive power
absorption, PV14 will instantly react on voltage changes,
PV15 and PV20 after a time delay of 0.2 s, PV23 and PV24
after 0.4 s, and so on.

At 0.1 s, PV25 starts reducing the PCC voltage by absorbing
reactive power till the minimum ENPF is reached at 0.13
s, which indirectly denotes the equality of the PCC voltages
between PV24 and PV25. After a time delay of 0.2 s, at 0.3 s,
the reactive power absorption process is undertaken by PV23
and PV24 and the corresponding PCC voltages, as well as the
voltages at the load nodes of the active feeder, are regulated at
0.48 s, as shown in Figs. 5a and 5b. Nevertheless, although the
absorbed reactive power reduces the network voltages bellow
the maximum permissible limit, an undervoltage violation
occurs at node 43 of the passive feeder according to Fig. 5c.

To address this problem, the second part of the proposed
CRPC method is activated at 1 s. According to the analysis
presented in Section IV-B, PV3 will instantly react on under-
voltages, while the undervoltage regulation control scheme of
PV4 will be activated after a time delay of 0.2 s. As a result,
at 1 s, PV3 starts to produce reactive power till the minimum
power factor is reached at 1.18 s and the undervoltage at
node 43 is successfully addressed. Nevertheless, at 1.15 s, the
reactive power production of PV3 leads to overvoltages at the
PCC of PV units, as depicted in Fig. 5a. Thus, the overvoltage
mitigation process of PV23 and PV24 is reactivated after a
time delay of 0.2 s, i.e., at 1.35 s. Once again, the reactive
power absorption of PV23 and PV24 results in an undervoltage
violation. Therefore, after a time delay of 0.2 s, PV4 starts to
produce reactive power and the network voltages are finally
regulated at 1.8 s, as shown in Fig. 5.

The reverse process is activated at 2 s by reducing the active
power injection of PV14 and PV20, as depicted in Fig. 4a,
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Fig. 4. Output power of PV units. (a) Active power and (b) reactive power.
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Fig. 5. Network voltages. (a) At the PCC of PV units, (b) at load nodes of
the active feeder and c) at load nodes of the passive feeder.

which, in turn, reduces the PCC voltages of the PV units below
the voltage threshold of Vmax − db. After a time delay of
0.4 s, PV23 and PV24 start to reduce the absorbed reactive
power. This action increases the voltage at node 43 of the
passive feeder above the voltage threshold of Vmin + db at
2.5 s. PV4 reacts instantly by reducing the reactive power
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TABLE III
COEFFICIENTS OF THE OLTC LINEAR MODELS

Non-linear Linear Coefficients R2 RMSEModel Model

(1 + tap δ
100

)2 a+ btap
a = 1.004 0.9970 0.0036
b = −0.0126

1

1+tap δ
100

c+ dtap
c = 1.004 0.9993 0.0036
d = 0.025

production. This process continues till the network voltages
are finally regulated, as shown in Fig. 5.

B. Long-term Evaluation

In this section, the long-term performance of the proposed
two-stage method of the planning phase is assessed by per-
forming time-series simulations. The simulation period is one
day with one minute time interval. Normalized generation and
consumption profiles, similar to those presented in [31], are
arbitrary distributed to PV units and loads, respectively. Con-
sidering PV units, the following process is adopted to derive
the generation profiles: Initially, active power measurements
from existing PV installations are acquired for a cloudy day
with one minute resolution. A cloudy day has been selected
instead of a sunny day to evaluate the performance of the
proposed method under highly variable generation. Afterward,
the generation profiles are normalized by dividing the acquired
measurements by the rated power of the corresponding PV
installation.

The coefficients of the linear terms of (19) and (20) that
model the dependence of the OLTC on the network voltages
and losses are presented in Table III. It can be observed that
the linear models can effectively replace the non-linear terms,
as verified by either the small root mean square error (RMSE)
or the high coefficient of determination (R2).

Considering the first stage of the proposed method, the
linearized model as expressed by (10)-(20) is solved 100 times,
assuming different combinations of the weight coefficients.
More specifically, w1 varies from 0 to 1 with a step of 0.01,
whereas w2 is the complement of w1. The linearized OVR
problem is solved using the CPLEX solver in GAMS. The
average solution time is equal to 12 s, whereas the solution
time of the non-linear problem, which is solved using the
BONMIN solver in GAMS, exceeds four orders of magnitude.
This can be regarded as an important shortcoming towards
the adoption of a non-linear model for the operation of the
distribution network under real-time conditions.

The Pareto-front of the linearized OVR problem and four
daily COOPs are presented in Figs. 6 and 7, respectively.
Concerning Fig. 6, the percentage increase of the energy losses
is calculated with respect to the Pareto-front solution of 26
daily tap changes.

The results of the second stage are summarized in Table IV,
where the proposed method is compared to an optimized
solution. More specifically, for each COOP, an optimization
problem is solved aiming to minimize network losses by
optimally reallocating the reactive power among the PV units.
The optimization problem is solved in GAMS using the
BONMIN solver. It can be observed that the proposed rule-
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Fig. 6. Pareto-front of the linearized OVR problem.
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Fig. 7. Daily COOPs. (a) Taps = 4, (b) Taps = 6, (c) Taps = 8, (d)
Taps = 10.

based reactive power allocation method presents a similar
performance against the use of optimization techniques.

Finally, a Monte Carlo (MC) analysis is performed to inves-
tigate the optimality of the calculated COOPs. In particular,
for each Pareto-front solution, 100 unique OLTC operating
plans are randomly created. For each OLTC operating plan, an
optimization problem is solved aiming to minimize network
losses by optimally distributing the reactive power among
the PV units. The results of this analysis are presented in
Fig. 8, where the percentage increase of the energy losses is
calculated with respect to the case the optimization problem
of (2)-(14) is solved, assuming w1 and w2 are equal to 0
and 1, respectively. It can be observed that the proposed two-
stage solution presents a similar performance compared to
the optimized solution and the calculated COOPs are near-
optimum ones.

VI. CONCLUSIONS

In this paper, a two-stage solution to the bi-objective OVR
problem is proposed. The developed method is characterized
by reduced computational complexity, compared to the use
of conventional optimization techniques, thus allowing its
adoption for the real-time network operation.

The proposed method is evaluated by performing time-
domain and time-series simulations. The former clearly shows
the quick response and the ability of the proposed methodol-
ogy to regulate network voltages in real-time, while also min-
imizing network losses. The latter highlights its near-optimal
performance, compared to the use of non-linear optimization



1949-3029 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2019.2914063, IEEE
Transactions on Sustainable Energy

9

TABLE IV
DAILY ENERGY LOSSES (MWH)

Tap Changes Number Proposed Optimized Difference (%)
0 9.820 9.783 0.371
2 9.805 9.768 0.373
4 9.783 9.745 0.386
6 9.764 9.728 0.371
8 9.734 9.700 0.347

10 9.711 9.678 0.349
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Fig. 8. Pareto-front of the non-linear OVR problem.

methods. Therefore, it can be considered as a valuable real-
time control scheme for DSOs towards the enhanced operation
of distribution networks.

APPENDIX

Following the analysis in [32] where the simplified DistFlow
equations are presented and using (9), the network losses and
voltages can be approximately calculated as follows:

P t
loss ≈

∑
i∈N

∑
j∈N

Rij

P t2
ij +Qt2

ij

V t2
hv

m2(1 + tapt
δ

100
)2 ∀t ∈ T

(A.1)
V t
i ≈ V t

nt,i/[m(1 + taptδ/100)] ∀i ∈ N, ∀t ∈ T (A.2)

where P t
ij and Qt

ij are the active and reactive power flowing
between the i-th and j-th nodes, respectively, while V t

nt,i

denotes the voltage at i-th node assuming zero tap position.
In both expressions, the nonlinear terms that model the OLTC
operation increase the computational complexity of the op-
timization problem. Nevertheless, due to the limited range
of the available tap positions, these nonlinear terms approx-
imate a linear behavior. Thus, to overcome this drawback,
the nonlinear terms are replaced with linear ones as shown
in (19) and (20), where coefficients a, b, c, and d can be
calculated by simply applying curve fitting techniques. These
coefficients depend on the characteristics of the OLTC, namely
the available tap positions and the parameter δ. Therefore, for
a given OLTC configuration, they are considered as constant
values in the linearized OVR problem.
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